Answer:
Option B
Explanation:
Key Idea As m=IA, so to change dipole moment (current is kept constant), we have to change radius of loop
initially,$m=I\pi R^{2} $ and $B_{1}=\frac{\mu_{0}I}{2R_{1}}$
Finally,$m^{'}=2m = I\pi R_2^2$
$2I\pi R_2^2=I\pi R_2^2$
or, $R_{2}=\sqrt{2}R_{1}$
So, $B_{2}=\frac{\mu_{0}I}{2(R_{2})}=\frac{\mu_{0}I}{2\sqrt{2}(R_{1})}$
Hence, $ratio\frac{B_{1}}{B_{2}}= \frac{\frac{\mu_{0}I}{2R_{2}}}{\frac{\mu_{0}I}{2\sqrt{2}R_{1}}}$
$\frac{B_{1}}{B_{2}}=\sqrt{2}$